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Every branch of study has something that drives students nuts. In 
physics there's the Clock Paradox of the Special Theory of Relativity. 
In chemistry, it's Pyrene and why this compound with 4n π-electrons 
(that is, 16 electrons) is aromatic. Of course, both of these strange but 
true phenomenon have been explained in their own CooperToons 
Educational Essays at   

 



http://www.coopertoons.com/education/specialrelativity/relativity_twinparadox.html 
 
... and ... 
 

http://www.coopertoons.com/education/pyreneandhuckelsrule/pyreneandhuckelsrule.html 
 

 ... respectively. 
 
But in mathematics and logic, there's one question that transcends 

these conundrums in sending students into spittle flinging diatribes as to 
what kind of dunderheads are writing their lousy textbooks. 

 
 
And that's when they learn that: 
 
 
 

The INTERSECTION of the EMPTY SET is 

EVERYTHING IN THE UNIVERSE! 
 

... or as mathematicians write: 
 
 

∩∅ = U 
 
 

Ha? (to quote Shakespeare). How can you take nothing and get 
everything? Not only nothing, but little slices of nothing and get 
everything! 

 
 
 



And then we also learn learn: 
 

The UNION of the EMPTY SET is 
ABSOLUTELY NOTHING 

 
... which we write: 

∪∅ = ∅ 
 

That is, the union of the empty set is the empty set. 
 
True, this last statement doesn't bother people much. After all, 

putting together a nothing with itself should give us nothing. 
 
But how can taking everything - the union - be less than taking 

bits - the intersection - of the same thing? 
 
And to make things more confusing, there are some books that say 

the union and intersection of the empty set are both the empty set! 
 
How do we make sense of this? 
 
Well, you could turn to advanced textbooks for succor. But this 

tack is stymied by 1) the astronomically absurd prices that publishers 
put on their textbooks, and 2) you won't find a proof even if you do pay 
the ridiculous prices. 

 
Instead you're likely to find statements like "It is up to the readers 

to convince themselves this is true." Or maybe the books say something 
like "It is often convenient to define the intersection of the empty set as 
the universal set." 



 
Of course, you can always turn to the Fount of All Knowledge. 

There with a mouse click or two, you'll find a chat room or discussion 
board about the topic. Now, it's not that the answers given are 
necessarily wrong. But it is true they tend to leave the readers more 
baffled than before. 

 
So why do college professors believe this is something the readers 

can easily convince themselves of? If that's true, then there should be a 
simple explanation. Certainly you have always wondered if there is a 
clear proof about the intersection and union of the empty set. 

 
No doubt you have, as Captain Mephisto said to Sidney Brand. 

And if you read on you'll be able to say ... 
 
  

"I Understand" 
- Manhunt of Mystery Island, (1945) 

 
There's one thing teachers should avoid when trying to explain the 

conundrums of the empty set. Don't try to make the math 
understandable. The math's not the problem. 

 
Instead, the problem is one of logic. More exactly, the proof will 

require us to transform what are nearly identical sentences in ordinary 
language into quite distinct formulas of symbolic logic. 

 
But we do have to start off talking about sets. 
 
A set, as everyone knows, is a collection of objects. Now for 

simple sets - as we will call them - the objects themselves are not sets 
but objects. That is, the elements of a simple set are not sets. 

 



But there are certainly sets whose elements are sets. For instance, 
the set of all cats can be grouped by classes of cat. 

 
Classes of Cat = { {Tabbies} , {Calico} , {Siamese} , {Alley} } 

 
Clearly there's nothing wrong with grouping cats by the classes of 

cats. And by doing so we have created a set whose elements are 
themselves sets. 

 
We will see, then, that we will be talking about the intersection 

and union of a class of sets. That is, we're talking about a set of sets. 
 
But get this. We'll be talking about a set of sets - but one that 

contains no sets. 
 
Now before you say "And from this, mathematicians make a 

living", bear with us. Things will get clearer as we go along. 
But now we'll take a brief review about something you already 

know. 
 
 
 
"It is common knowledge to every schoolboy ... " 

- Ogden Nash 
 "Portrait Of The Artist As A  
   Prematurely Old Man" 

 
 
Starting with grade school, you learned about sets. That's always the 
first chapter of math textbooks. After that chapter you never talk about 
sets again for the rest of the year. 
 
 



 
But you did learn about the intersection and union of sets. For instance, 
if we define the sets, A1, A2, and A3 as: 
 

A1 =   { 1 , 2 , 3 , 4} 
  	 	 	
A2 =   { 2 , 5 , 6 , 8} 
  	 	 	
A3 =   { 2 , 8 , 14 , 20} 

 
Then the union of A1 , A2 , and A3 is:  
 

A1 ∪  A2 ∪  A3 =   { 1 , 2 , 3 , 4 , 5 ,  6 , 8 , 14 , 20 } 
 
That is we pick out the elements that you find in at least one of the sets. 
 
And the intersection ....? 
 
 
The intersection of A1 , A2 , and A3 is:  
 

A1 ∩ A2 ∩ A3 =   { 2 } 
 
That is, we pick the elements common to every set. 
 
Note we emphasized the phrases "every set" and "in at least one of the 
sets". This every vs. at least one dichotomy is most important in our 
final proof. 
 
The next step is to - quote - "simplify" - unquote - our notation. 
 
 
  



"Life is really simple, but we insist on making it 
  complicated." 

- Attributed to Confucius 
 
 
OK. Now let's define a class of sets, S, in terms of our earlier sets: 
 
 

S = { A1 , A2 , A3 } 
 
 
And to make it even simpler, we represent the union as: 
 
 

∪S = ∪  Ai where i = { 1 , 2 , 3 } 
 
 
We can then write the union with admirable brevity: 

 
 

∪S = { 1 , 2 , 3 , 4 ,  5 , 6 , 8 , 14 , 20 } 
 
 
And for the intersection we write: 
 

∩S = ∩ Ai where i = { 1 , 2 , 3 } 
 

... which for our class of sets is: 
 
 

∩S = { 2 } 
 



 
OK. Now let's create general definitions for union and intersection. In 
English this is: 
 
 

The union of a class of sets is the set of elements that 
is in at least one of the sets. 

 
... and  
 

The intersection of a class of sets is the set of elements 
that is in every set. 

 
Notice these generalized definitions are almost the same. The only 

difference is that union talks about at least one set in the class. The 
intersection talks about every set. 

 
Again we have the at least one / every dichotomy. 

 
 
"Writing in English is like throwing mud at a 
wall." 

- Somebody But Probably Not Joseph Conrad  
 
 

The last two definitions for union and intersection may seem 
precise but actually are not. They are "informal" as mathematicians 
would say. To get further into our proof, we need to replace our English 
with a completely formal language. That doesn't mean you speak 
politely. It means you use symbols instead of words and formulas 
instead of sentences. 

 



So obviously we need to to start defining symbols. And so we 
begin with: 
 
 

∪    =   Union 
x |   =   The set of all x such that 

∃   =   For at least one 
(For some) 

∈   =   is an element of 
 
 
And now we can write: 
 
 

∪S = { x| ∃ Ai ∈ S, x ∈ Ai } 
 
 
So by checking the table, we read this as: 
 
 

The union of a class of sets, ∪S, is the set of all x such 
that for at least one set Ai that is an element of S, x is 
an element of Ai. 

 
 

In other words, the element x only has to be in at least one of the 
sets. Then it is a member of the union of the sets. 

 
Again note we used the phrase at least one. 
 
 
 



And now we do the same thing for intersection. That is, we take 
the definitions: 

 
∩   =   Intersection 
x |   =   The set of all x such that 

∀   =   For every 
(For all) 

∈   =   is an element of 
 
... and we get: 
 

∩S = { x| ∀ Ai ∈ S, x ∈ Ai } 
 
... which you can see is verbalized as: 
 

The intersection of a class of sets, ∩S, is the set of all x 
such that for every set Ai that is an element of S, x is 
an element of Ai. 

 
In other words, the element x must be in every one of our sets. 

Then x is a member of the intersection of the sets. 
 
Once more these more formalized definitions differ only in the 

phrases "for at least one" and "for every". And these are the definitions 
you find if you go to the more advanced texts. 

 
But there's one thing the textbooks don't mention. Even these 

"rigorous" definitions leave out quite a bit of the true logical language. 
When we include the logic, we will see the two definitions becomes 
quite a bit different. 

 
  



"It is not logical." 
- The Wrath of Khan, 1982 

 
OK. At this point it may look like we're heading off to where no 

man has gone before or at least getting sidetracked. But actually we're 
going to start talking about how we logically express the concepts "for 
at least one" (or "some") and "for every" (or "all"). Specifically, we'll 
ask just what does it mean when we say: 
 
 

All P's are Q's. 
 
 
... and  

Some P's are Q's. 
 
 
First we'll look at: 

 
 

All P's are Q's. 
 
 

Logicians tell us "All P's are Q's" is defined by: 
 
 

 
All P's 
are Q's   =   For every thing in the world, if it has 

property P then it has property Q 
 
 
 
 



 
Now we can write this entirely without words - that is 

symbolically - if we define the symbols: 
 

∀   =   "For all" 
"For every" 

→   =   "If-Then" 
P(x)   =   x has property P 
Q(x)   =   x has property Q 

 
... and write: 
 

∀x, P(x) → Q(x) 
 

If we switch back to the stilted English - sometimes called 
"Loglish" - we're simply saying 

 
For every x, if x is P, then x is Q. 
 
In other words, every x that has a property P will also will have 

property Q. And you can see that this is indeed saying "All P's are Q's". 
But is this the best way to say, "All P's are Q's"? For instance, 

could we define a new symbol: 
 
 

∧  = AND 
 
... and write: 
 

∀x, P(x) ∧  Q(x) 
 
 



That is, we say: 
 

For every x, x is P AND x is Q. 
 
Unfortunately, this doesn't work. This sentence actually means, 
  

"Everything in the world is both P AND Q." 
 

Certainly not what we want to say. 
 
So if we want to say "All P is Q", we have to stick to the "If-Then" 

structure. 
 
OK. But now suppose we want to want to say: 

 
Some P's are Q's. 

 
Now it's tempting - and common - to believe we just take the "All 

P is Q" structure and write: 
 
 

∃x, P(x) → Q(x) 
 
 
... where 
 
 

∃ = 
"For at least one" 
or 
"For some" 

 
 
 



But as we'll show a bit further down, you can't do this. Instead we 
do have to use an "AND" type structure. That is we have to write: 
 

∃x, P(x) ∧  Q(x) 
 
... which means: 
 

For at least one x, x is P and x is Q. 
 

Note that this does not not mean everything in the world is P and 
Q. Instead, it simply means some things are both P and Q - which is the 
same as "Some P's are Q's." 

 
But why can't we use the "If-Then" structure? It seems like that 

should work. 
 
Well, it doesn't. And to understand why, we have to turn to the 

details of what makes an "AND" statement TRUE and what makes an 
"If-Then" statement TRUE. You might call this: 
  
 
The Great "If-Then" vs. "AND" Debate 
 

OK. Suppose it's raining. Then you might tell one of your friends: 
 

Don't go outside or you will get wet. 
 

Now notice how this means the same thing as: 
 

If you do go outside, you will get wet. 
 
 



So if we define two new symbols as: 
 

¬   =  Not 
∨    =  Or 

 
... we write the equations: 
 

P → Q   =   ¬P ∨  Q 
("If P, Then Q"   =   "Not P Or Q") 

 
Now in logic, a sentence containing the word "OR" is TRUE if at 

least one of the parts is TRUE. For instance, if I say: 
 
 

George Washington was the first President 
 
 
... and  
 
 

Thomas Jefferson was the 44th President. 
 
 
... then the statement: 
 
 

George Washington was the first President OR 
Thomas Jefferson was the 44th President. 

 
 
... is TRUE even though Tom was the third president. 
 



So a sentence like 
 
 

P ∨  Q 
 
 
... is TRUE unless both P and Q are FALSE. 
 
 

Logicians usually put the TRUE or FALSE values of sentences in 
Truth Tables. The Truth Table for "OR" sentences, ∨ , is: 
 
 

Truth Table: OR (∨) Statements 
P Q P ∨  Q 

TRUE TRUE TRUE 
TRUE FALSE TRUE 
FALSE TRUE TRUE 
FALSE FALSE FALSE 

 
 
 

Now what about this sentence: 
 
 

¬P ∨  Q 
 
 

Well, if P is TRUE, then ¬P (that is, "Not P") must be FALSE and 
vice versa. And so from our definition of ∨ , we get the following Truth 
Table for ¬P ∨  Q. 



 
Truth Table: ¬P ∨  Q 

P ¬P Q ¬P ∨  Q 
TRUE FALSE TRUE TRUE 
TRUE FALSE FALSE FALSE 
FALSE TRUE TRUE TRUE 
FALSE TRUE FALSE TRUE 

 
In other words, the statement "¬P ∨  Q" is FALSE only if P is 

TRUE and Q is FALSE  
 
But remember. "¬P ∨  Q" is the same as the "If-Then" statement, 

"P → Q".  The full Truth Table  of the "If-Then" statement is 
therefore: 
 

Truth Table: If-Then Statements 
P Q P → Q 

TRUE TRUE TRUE 
TRUE FALSE FALSE 
FALSE TRUE TRUE 
FALSE FALSE TRUE 

 
 

So an "If-Then" statement is FALSE only if the "If" part - called 
the antecedent - is TRUE and the "Then" part - called the consequent - 
is FALSE. 

 
 
Which brings us to a crucial point in our proof. That is: 

 



An "If-Then" Statement is always TRUE if the "If" 
part is FALSE. 

 
The idea that an "If-Then" statement must be TRUE if the "If" part 

is FALSE causes some students consternation. But it actually works out 
OK. If you wish, you can see a more detailed derivation of the "If-
Then" Truth Table and how it's the same as the "Not-Or" Table at 
http://www.coopertoons.com/education/emptyclass_intersection/educati
on/ifthenlogic/ifthen1.html.   But if that explanation still leaves you 
wondering, as an American President once said, "Trust me." 

 
Now we'll shift gears once more. Let's take a look at the correct 

expression for saying "Some P is Q". That is: 
 

Some P is Q     =     ∃x, P(x) ∧  Q(x) 
(For at least one x, P AND Q) 

 
Remember, an "AND" statement, ∧ , is TRUE only when both P 

and Q are TRUE. The full "AND" Truth Table is: 
 

Truth Table: AND (∧) Statements 
P Q P ∧  Q 

TRUE TRUE TRUE 
TRUE FALSE FALSE 
FALSE TRUE FALSE 
FALSE FALSE FALSE 

 
So for "∃x, P(x) ∧  Q(x)" to be TRUE we must find that there is at 

least one x which has both property P and property Q. We can then 
legitimately claim that "Some P is Q" is TRUE. 

 



But what if we look at the incorrect expression for "Some P is Q"? 
That is, if we write: 
 
 

∃x, P(x) → Q(x) 
 
 

Why can't we use that instead? 
 

Well, let's look to see what makes the statement TRUE. 
 
From the "If-Then" Truth Table, we see that "∃x, P(x) → Q(x)" is 

only FALSE if P(x) is TRUE and Q(x) is FALSE. So there are a lot of 
ways to make this statement TRUE. 

 
For instance, if a particular x has both property P and property Q, 

then the statement "P ∧  Q" is TRUE. 
 
But suppose x doesn't have property P at all. Then P(x) is FALSE. 

So the entire statement "∃x, P(x) → Q(x)" is always TRUE.  Then it 
doesn't matter if Q(x) is TRUE or FALSE. 

 
We see, then, that a statement like "∃x| P(x) → Q(x)" gives us too 

many options for x. In fact, such statements are pretty much worthless 
in logic. It certainly doesn't mean "Some P are Q". 

 
 
 
 
So in the end we must conclude that the correct sentences are: 

 
Some P is Q   =   ∃x, P(x) ∧  Q(x) 

 



... and ... 
 

All P is Q   =   ∀x, P(x) → Q(x) 
 

When we want to talk about all things we must use an "If-Then" 
statement. And if we talk about at least one thing, we must use the 
"AND" statement. 

 
So now we can begin. 

 
 
 
 
A Good Start 
 

We are now going to define the concepts of the intersection and 
union of sets in a most rigorous manner. But by now you shouldn't have 
much trouble with our logical lingo. 

 
For sets Ai contained in a class S, we define the union of the class, 

∪S as: 
 

 
∪S = { x| ∃Ai, (Ai ∈ S) ∧  (x ∈ Ai) } 

 
 
 
 
 

This is stated as: 
 

The union of the sets in class S, ∪S, is the set of all 



elements, x, such that for at least one set Ai, Ai an 
element of S AND x is an element of Ai 

 
 

As we have now repeated ad nauseam, we have to use the "AND" 
form since we are talking about at least one of the subsets, Ai. 

 
But also notice how this works fine to define the union of the sets. 

We pick out a set of elements (x) where it is true that Ai is an element 
of S AND x is in at least one Ai. 

 
In other words, all elements in the sets in S makes up the union of 

the sets. 
 
So far so good. 
 
Now we can define intersection as: 
 

∩S = { x| ∀Ai, (Ai ∈ S) → (x ∈ Ai) } 
 
This is stated as: 
 

The intersection of the sets in class S, ∩S, is the set of 
all elements, x, such that for every set Ai, IF Ai is an 
element of S THEN x is an element of Ai 

 
And yes, because we use "for every", ∀, we have to use the "If-

Then" form. 
 
Again notice what we've written works fine for our notion of 

intersection. We select the x's where then x is in every set as long as Ai 
is in S. 

 



In other words, the intersection is the x's common to every set. 
 
 
"I love to talk about nothing ... It's the 
only thing I know anything about." 

- Oscar Wilde (An Ideal Husband) 
 
 

And finally we can arrive at the answer. 
 
Remember our set S is a class of sets.  

 
S = {A1 , A2 , A3} 

 
But now let's take all the sets out. 

 
 

S = { } 
 
 

This leaves us with the empty class, which we represent with the 
symbol: 

 
Φ 

 
 

That is, Φ is a class of sets which just happens to contain no sets. 
 
 
 

So how do we define the union of Φ, ∪Φ? 
 
Actually it's easy. We simply substitute Φ for S in our definition. 



 
 
That is, since we defined: 
 

∪S = { x | ∃Ai, (Ai ∈ S) ∧  (x ∈ Ai) } 
 
 
.. the union of Φ, ∪Φ, is just: 
 
 

∪Φ = { x | ∃Ai, (Ai ∈ Φ) ∧  (x ∈ Ai) } 
 
 

But there's one important thing to remember. 
 
 

Φ is the empty class. It contains no sets. 
 
 
In other words, the statement: 
 

Ai ∈ Φ 
 

... is always FALSE. 
 
 

And also remember. If you have an "AND" statement, it is 
FALSE as long as one of the parts is FALSE. 

 
 
So our somewhat long defining sentence for ∪Φ: 
 



∪Φ =  {x |  ∃Ai,  (Ai ∈ Φ)   ∧    (x ∈ Ai)} 
 
... now becomes ... 
 

∪Φ =  {x |   FALSE   ∧    (Doesn't} 
Matter) 

 
... which collapses to the rather strange - but correct - definition: 

 
∪Φ = { x | FALSE } 

 
That is, there are no x's which make the defining statement TRUE. So 
the union of the empty class is indeed the empty set. 
 

∪Φ = ∅ 
 
 

And for intersection? 
 

Again we take our general definition, for intersection: 
 

 
∩S = { x| ∀Ai, (Ai ∈ S) → (x ∈ Ai) } 

 
 
... and substitute Φ for S: 
 

 
∩Φ = { x| ∀Ai, (Ai ∈ Φ) → (x ∈ Ai) } 

 
 
And here at long last we reach the answer. 



 
We mentioned that an "If-Then" statement is FALSE only when 

the "If" part is TRUE, and the "Then" part is FALSE. 
 
But that means that if the "If" part is always FALSE, the whole 

statement is always TRUE! 
 
And note that in the statement: 

 
 

Ai ∈ Φ → x ∈ Ai 
 
 
... the "If" part: 
 
 

Ai ∈ Φ 
 
 
... is indeed always FALSE. Again there are no sets in the empty class. 
 
 
Therefore our defining sentence for the intersection of the empty class: 
 

∩Φ = {x |  ∀Ai,  (Ai ∈ Φ)   →   (x ∈ Ai)} 
 
... now becomes ... 
 

∩Φ = {x |   FALSE   →   (Doesn't} 
Matter) 

 
 
 



But this statement always TRUE! And the intersection of Φ ends up 
being defined by 
 

∩Φ = { x | TRUE } 
 

So any x, that is, anything in the world - even in the whole 
universe - makes the statement TRUE. Anything is in the intersection 
of Φ. That is, the intersection of the empty class is the universal set. 
 

∩Φ = U 
 
 
 
"Nikita! What's going on?" 

-Laventry Beria to Nikita Khrushchev, 
 June 26, 1953 

 
It's one thing to - somewhat mechanically - show that by certain 

definitions you can produce amusing paradoxes. But the real student 
wants to understand what's going on. 

 
In particular, if we're talking about the intersection of the empty 

class being everything, where did all the elements come from? 
 
We must re-emphasize that we are referring to the empty class. 

That is, we are talking about a set whose elements are other sets. 
 
 
So let's look again at our general definition of intersection: 

 
 

∩S = { x | ∀Ai, (Ai ∈ S) → (x ∈ Ai) } 
 



 
And of course, there is nothing that requires the individual sets, 

Ai in our class, S, to be empty. 
 
And now for the really strange part. 
 
Even when we require the class to contain no sets - that is, we 

create Φ - we still define its intersection as: 
 

∩Φ = { x | ∀Ai, (Ai ∈ Φ) → (x ∈ Ai) } 
 

Note that the individual sets, Ai, can themselves still have 
elements and are still part of our definition! The non-empty sets, Ai, 
and their individual elements, x, are still there. So if the defining 
statement is TRUE, we have the x's - even if the class, Φ, is empty! 
 
At this point, we can raise a point that is so subtle that it usually passes 
without comment. But we'll raise the point anyway. 
 
We said that the entire statement: 
 
 

(Ai ∈ S) → (x ∈ Ai) 
 
 
..is TRUE if ...  
 
 

Ai ∈ S 
 
 
... is FALSE. That is, the "If" part can be FALSE and so the "Then" 
part, x ∈ Ai, can be TRUE or FALSE as we please. 



 
So we wonder. 
 
Can't we simply pick a non-empty set Ai that is not in S? Won't that 
make  
 
 

Ai ∈ S = FALSE 
 
 
.. and we can then pick any x in the world? So in that case even if S is 
not empty, wouldn't the intersection of S be the Universal Set? 
 

Actually no.   Remember	we	are	the	ones	to	pick	out	which	
sets,	Ai,	we	want	to	determine	if	they	intersect.	It's	our	arbitrary	
decision.	Therefore	these	sets	define	the	class	we	call	S.  As long as 
we are talking about S as a non-empty class, then the expression: 

 
∀A(Ai ∈ S) 

 
... is	-	and	pardon	us	if	we	shout	-	TRUE	BY	DEFINITION!	
	

What	we	are	doing,	then,	is	limiting	our	Universe	of	Discourse	as	
the	class	S.	So	there	are	no	sets	in	our	universe	not	in	S.		
Therefore	the	defining	equation	of	intersection:		
	

{x|	∀Ai,	(Ai	∈	S)	→	(x	∈ 	Ai)	}	
	
...	with	the	IF-part	being	TRUE	by	definition,	the	whole	IF-THEN	
statement	can	only	be	TRUE	if	the	THEN-part	is	also	TRUE.	
Ergo,	the	set	of	x	that	make	up	the	intersection	is	only	defined	by	
the	x	values	that	are	in	every	Ai	that	we	specify.	

	



	
Therefore	the	defining	equation	of	intersection:	
	

{	x|	∀Ai,	(Ai	∈ 	S)	→	(x	∈ 	Ai)	}	
	
Ergo,	the	set	of	x	that	make	up	the	intersection	is	only	defined	

by	the	x	values	that	are	in	every	Ai	that	we	specify.	
 
It's	only	when	our	class	S	is	the	empty	class,	Φ	that	the	"If"	part	

of	the	statement	is	always	FALSE.	This	makes	the	whole	"If-Then"	
statement	always	TRUE	for	any	x.	So	we	have	removed	any	
restrictions	on	what	sets	we	have	to	choose	from.	We	can	now	pick	
every	element	in	every	set	in	the	world	-	and	we	end	up	with	the	
universal	set. 
 
 

"'Twas strange, 'twas passing 
strange." 

- William Shakespeare (Othello) 
 
All of what we’ve just written seems strange. But strange does not 

mean incorrect. 
 

We've left one thread hanging - which will also seem strange. 
What about the books that say the intersection of the empty set is the 
empty set. 

 
After all you'll see things like 

 
For all sets, the union of the empty set is the set itself, 
and the intersection of the empty set is the empty set. 

 
 



... which symbolically is: 
 

∀A, A ∪  ∅ = A 
∀A, A ∩ ∅ = ∅ 

 
 

Here we're saying for all and using ∀. That means all sets - not all 
except one. 

 
The empty set is indeed a set. So from our equations it should also 

be true that: 
 

∅ ∪  ∅ = ∅ 
∅ ∩ ∅ = ∅ 

 
But hold on there, pilgrim. We've just got finished showing the 

intersection of the empty set is the universal set. 
 
No, we didn't. We showed the intersection of the empty class is 

the universal set. 
 
Now although you will read that there is only one empty set - the 

empty set is unique - we can show that there really is no conflict when 
talking about an empty class vs. an empty set. And the distinction will 
clear up the confusion. 

 
Consider an oddball set called T which we define as: 

 
T = { ∅ } 

 



Now notice. T is a set that contains a set. Although ∅ contains no 
elements, T does. It's sole element is the empty set. So T is not the 
empty class. 

 
Now what does it mean if we talk about the union or intersection 

of T? Well the union and intersection of a class is the union and 
intersection of the sets which are elements of the class. So when talking 
about the union and intersection of T, we are talking about the union 
and intersection of the empty set. 

 
To determine what the new union and intersection will be, we first 

return to our definition for union. 
 
 
 

∪S = { x| ∃Ai, (Ai ∈ S) ∧  (x ∈ Ai) } 
 
 

But we now insert our new class, T, into the definition. We now 
have: 

 
∪T = { x| ∃Ai, ( Ai ∈ T) ∧  (x ∈ Ai } 

 
So we ask. Is the first part: 
 

Ai ∈ T 
... TRUE or FALSE? 
 

Well, is TRUE. After all, we defined T so that its contains the 
empty set, ∅.  
 

T = { ∅ } 
 



So there is a set, Ai in T. Although it's the empty set: 
 

Ai = ∅ 
 
... and so ...  
 

Ai ∈ T 
 
... is indeed TRUE. ∅ may contain no elements, but T does. 
 

On the other hand, we also know that the second part of the "If-
Then" statement: 
 

x ∈ Ai 
 
... is the same thing as: 
 

x ∈ ∅ 
 
... which is FALSE. After all, ∅ has no elements. 
 

So we can specifically rephrase our defining sentence as: 
 

∪T = { x|  (∅ ∈ T) ∧ (x ∈ ∅ } 
  TRUE AND FALSE 

 
Since this is an "AND" statement and one of the parts is FALSE, 

the whole statement is FALSE. 
 

∪T = {x| FALSE } 
 
 
 



... and so ... 
 
 

∪T = ∅ 
 

So the union of the empty set with itself is indeed the empty set. 
Like what we saw before. 

 
But now things will get a bit different when we look at the 

intersection of T, ∩T. 
 
 

Remember the general definition for intersection is: 
 
 

∩S = { x| ∀Ai, (Ai ∈ S) → (x ∈ Ai) } 
 
 
... and we plug in the formulas for T and ∅: 
 
 

∩S = { x| ∀Ai, (Ai ∈ T) → (x ∈ Ai) } 
 
 
... which when we substitute ∅ for Ai we get: 

 
∩S = { x| (∅ ∈ T) → (x ∈ ∅) } 

 
Now look at the logic. As before we have: 

 
(∅ ∈ T)   =   TRUE 

 



... and ...  
 
 

(x ∈ ∅)   =   FALSE 
 
 

So going back to our defining sentence we have:  
 
 

∩T = { x| (∅ ∈ T) → (x ∈ ∅ } 
  IF TRUE THEN FALSE 

 
 
 

From the Truth Table of the "If-Then" sentence we remember: 
 
 

(TRUE → FALSE) = FALSE 
 
 
...and see that our defining sentence for intersection of the empty set - 
unlike that for the empty class - is always FALSE.  Again the more 
complex sentence simplifies, this time to: 
 
 

∩T = {x | FALSE } 
 
 
The intersection of the empty set with itself is indeed ∅. 
 
To summarize our conclusions, for a class T defined as: 
 
 



T = { ∅ } 
 
 
... we find that ... 
 

∪T = ∅ 
∩T = ∅ 

 
... even though earlier we found: 
 
 

∪Φ = ∅ 
∩Φ = U 

 
 

Are you saying, then, that there are really two empty sets? One that 
does that not contain sets and the other does not contain objects? 

 
No, the empty set is indeed unique. What produced our apparently 

contradictory findings is that we are dealing with two distinct 
definitions. In one case - where the intersection of the empty set (or 
class) is the universal set - we are talking about the intersection of sets 
in a class devoid of sets. 

 
In the other case, though, when we get the intersection of the 

empty set to be the empty set, we are talking about the intersection of a 
non-empty class whose sole element is the empty set, ∅. The two 
concepts are not the same nor contradictory. We are simply talking 
about different types of intersection. We shouldn't be surprised if the 
two definitions give us different answers. 

 
Which they do. 
 



 
Blowing It Off 
 
 

We can now understand why the topic of the union and 
intersection of the empty class or set is pretty much blown off by 
authors of math textbooks. And why they just say you should "convince 
yourself" or "define" the statements to be true. 

 
 
To explain the union and intersection of the empty class as a 

rigorous proof, the authors would have to wander into the field of 
symbolic logic. This would then force the student to grapple with two 
specific points of logic - and points that can be particularly confusing. 

 
 
 

• 

The definitions of union and intersection require an 
understanding that the logical sentences, "Some P's is 
Q" and "All P's are Q" are actually completely different 
logical expressions. The former sentence - defining 
union - requires an AND construction and the latter - 
defining intersection - needs an If-Then structure. 

• 

The second point of confusion arises from If-Then 
sentences always being TRUE if the If part - the 
antecedent - is FALSE. Teachers have been struggling 
to explain this characteristic to their students literally 
for millennia. But it is essential to understanding why 
the intersection of the empty set is the universal set. 

 
 
 



A modest CooperToons suggestion is that the authors of the 
textbooks on set theory should simply cut out the "convince yourself" 
nonsense as if what they’re saying is something any dunderhead should 
see immediately.  Instead they should just admit the union and 
intersection of the empty class seem strange but are due to subtle points 
of logic. Maybe they can convince themselves this is a better way. 

 
But in any case, we have finally seen we can write with perfect 

correctness: 
 

∪Φ = ∅ 
 
... and 
 

∩Φ = U 
 
 
 
And now we can say: 
 
"I understand." 
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